
Get & Transform Power Query
Workshop for Audit, Tax and
Advisory Professionals
An Introduction

Kathryn Newitt & Liam Bastick 11/6/24 © SumProduct 2024

 SumProduct Pty Ltd

Page 2 of 126 © SumProduct Pty Ltd 2009 - 2024

 SumProduct Pty Ltd

Page 3 of 126 © SumProduct Pty Ltd 2009 - 2024

Contents

Introduction.. 5

Power Query: Getting & Transforming Your Data .. 6
Getting Started: Importing Data ... 7

Getting Started: Transforming Data ... 9

Getting Started: Loading Data .. 13

Appending Files ... 14

Extracting from a Folder ... 16

Unpivoting Data .. 20

Relationship between Power Query and Power Pivot .. 23

(Data) Model Building ... 24

Merging Queries ... 28

Extracting from a Website .. 34

Introduction to M.. 39

Creating a Calendar – Step 1: Creating Parameters.. 44

Creating a Calendar – Step 2: Create the fnGetParameter Function ... 46

Creating a Calendar – Step 3: Build Framework ... 47

Creating a Calendar – Step 4: Adding More Date Columns .. 50

More on Parameters ... 51

Conditional Columns ... 52

Power Query Parameters .. 55

Using Defined Names as Parameters .. 64

Using Parameters as Locations ... 78

Importing from PDF Files .. 88

Transposing Data .. 102

Splitting Columns .. 103

 SumProduct Pty Ltd

Page 4 of 126 © SumProduct Pty Ltd 2009 - 2024

 SumProduct Pty Ltd

Page 5 of 126 © SumProduct Pty Ltd 2009 - 2024

Introduction
This document supports the ‘Get & Transform Power Query Workshop for Audit, Tax and Advisory
Professionals’. In particular, this document focuses on the artist formerly known as Power Query,
now known as Get & Transform.

This session focuses on said Power Query in its Excel form, where I look at the ease with which I can
extract, clean and manipulate data from a variety of sources. It is known as an “Extract, Transform
and Load” tool – or “ETL” for short.

Power Query is also available in Power BI. Changes and improvements generally appear in Power BI
before Excel, and there are more data connectors available. Since the layout of Power BI is often
updated, you may find that some screenshots don’t match your screen exactly, but all the
functionality described here will be available.

Data is one of the most valuable assets of any business, and Power Query is an invaluable tool to
turn your data into information. Let’s get started.

 SumProduct Pty Ltd

Page 6 of 126 © SumProduct Pty Ltd 2009 - 2024

Power Query: Getting & Transforming Your Data
Regular users of Excel are well aware of the possibilities to manipulate and present data that has
come from a variety of sources. Getting that data ready for each solution can be time consuming:
complex solutions can require VBA or SQL expertise, and simple solutions often involve repetitive
tasks before the data is ready to be uploaded to PivotTables.

Enter Power Query (alternatively known now as “Get & Transform”), which has been designed for
Excel users to enable the rapid uploading and cleaning of data without needing to turn (in)to VBA
and SQL experts.

Power Query is a free add-in ETL (Extract, Transform and Load) tool for users of Excel 2010
(Professional Plus with Software Assurance version only) and 2013, where it has its own tab on the
Ribbon, and is now fully integrated into Excel 2016 onwards and Office 365, where it may be found
on the data tab under ‘Get & Transform’.

As shown in Excel 365, Power Query is able to upload from many sources:

 SumProduct Pty Ltd

Page 7 of 126 © SumProduct Pty Ltd 2009 - 2024

Having extracted the data from the appropriate source (more on the details of this process later),
the transformation can take place – cleaning away any unrequired detail, merging where
appropriate (all without the erstwhile VLOOKUP), and enhancing by calculating and adding new
columns. There is even a button to unpivot data!

Whilst the majority of transformations can be done with no formulae or coding, each step is stored
in M, the language behind Power Query. For the more ambitious user, M may be used to refine and
build on what Power Query creates automatically.

The final step for the ETL tool is to load - to Excel tables, Power Pivot, Power BI – or else just store a
query for use by other queries, i.e. a building block that may be re-used. Since everything is
recorded in M, you may simply reload to the same destination – simply refresh.

Please be aware that Microsoft often releases updates, usually on a monthly basis – try searching
‘updates for Get & Transform in Excel’ to see the latest updates.

Getting Started: Importing Data

The best way to get to grips with a tool like Power Query is to start with a simple task. Excel users
may often need to take data from CSV (comma separated values) files and transform it ready for
analysis. Power Query has been designed to assist with this, so let’s see how easy it can be.

Starting with a new workbook, I locate the ‘Get & Transform Data’ section on the Data tab:

For this example, I am using the ‘From File’ option, and choosing ‘From Text/CSV’:

 SumProduct Pty Ltd

Page 8 of 126 © SumProduct Pty Ltd 2009 - 2024

I browse to the location of a simple expense CSV file.

I select the file using the Import button.

This screen allows me to specify properties of the CSV file that I am importing from. The ‘Data Type
Detection’ allows me to choose whether the algorithms Power Query uses to determine the data
types are used, and whether to read the whole dataset. The default is to base the types on the first
200 rows, which is enough for this short example. Whilst I have the option to load from this point,
I’d always recommend the ‘Transform Data’ option to avoid any nasty surprises.

 SumProduct Pty Ltd

Page 9 of 126 © SumProduct Pty Ltd 2009 - 2024

Getting Started: Transforming Data

The Power Query Editor screen shows the table of data as it will be uploaded. In the ‘Query
Settings’, the name of the query appears under PROPERTIES and under ‘APPLIED STEPS’, where I can
see the steps that Power Query has taken automatically. The source has been identified, the header
column names have been assumed and the ‘Changed Type’ step sets the detected type for each
column. The M code for ‘Changed Type’ is:

=Table.TransformColumnTypes(#"Promoted Headers",{{"Name", type text}, {"Date", type date}, {"expense
code", type text}, {"amount", type number}})

It is essentially a list of column names and their assigned data types based upon the data that Power
Query has analysed:

 Name is type text
 Date is type date
 expense code is type text
 amount is number.

In this case, all the assumptions look good so I may accept Power Query’s automatic assignment of
data types.

I can make any changes to the data, such as changing column names or removing columns. Selecting
a column and viewing the ‘Transform’ tab reveals buttons for many of the usual transformations.

 SumProduct Pty Ltd

Page 10 of 126 © SumProduct Pty Ltd 2009 - 2024

I can double-click on expense code and rename it to Expense Code. This creates a new step
‘Renamed Columns’:

The M code is:

= Table.RenameColumns(#"Changed Type",{{"expense code", "Expense Code"}})

If I rename amount to Amount, Power Query recognises that I am doing and adds the change to the
existing ‘Changed Type’ step:

= Table.RenameColumns(#"Changed Type",{{"expense code", "Expense Code"}, {"amount", "Amount"}})

A more complex step is to make the Name data appear on each row. There is a ‘Fill Down’ option
available if I right-click on the Name column, but it doesn’t seem to do anything!

In order to use the ‘Fill Down’ functionality, the ‘empty’ Name cells that are to be populated must be
set to null, but currently they are blank. I need to replace the blanks with null so that I can fill down.
The option to ‘Replace Values…’ is also on the right-click menu. The ellipsis (…) indicates that a
window will appear:

 SumProduct Pty Ltd

Page 11 of 126 © SumProduct Pty Ltd 2009 - 2024

I opt to replace blanks (which I just leave empty) with null. I don’t need the ‘Advanced options’ here.

The ‘Filled Down’ step is from my failed attempt before I set the values to null. I will delete this
shortly, but first I ‘Fill Down’ again.

The steps are generated in the right-hand pane, and we are ready to load to Excel using the ‘Close
and Load’ button on the ‘File’ tab. The uploaded table is shown below, and the Workbook query
window displays the query that generated the data, so that it can be updated and / or refreshed as
required. The ‘TABLE TOOLS’ tab opens automatically ready for use in the Excel workbook:

 SumProduct Pty Ltd

Page 12 of 126 © SumProduct Pty Ltd 2009 - 2024

This time, the ‘Fill Down’ is successful. I can delete the first ‘Filled Down’ step now. I can select or
hover over ‘Filled Down’, and click on the delete cross that appears next to it:

I am prompted to confirm my action:

Power Query has been improved over time, and copes well with deleting intermediate steps now.
Previous versions required me to manually change references to previous steps, but this is now
automated. If I am at all concerned, I can take a copy of my query before I proceed (more on this
later). In this case, I am happy to proceed:

 SumProduct Pty Ltd

Page 13 of 126 © SumProduct Pty Ltd 2009 - 2024

Getting Started: Loading Data

Now I am happy with the data, I can use the ‘Close & Load’ option on the Home tab to load the data
to Excel:

Choosing ‘Close & Load’ will load my query into Excel as a Table in a new sheet. As the help message
implies, choosing ‘Close & Load To…’ will allow me to add further specifications into a dialog. More
on this later.

I am happy to load the data into a new sheet:

The sheet has the same name as the query, and my Table appears, and is given the same name as
the query (with any spaces converted to underscores). The query that created the table appears in
the ‘Queries and Connections’ pane. Refreshing this query ensures that it is extracting, transforming
and loading the latest data source. The original CSV file is not changed by any of the steps I have
created.

Let’s look at appending more data…

 SumProduct Pty Ltd

Page 14 of 126 © SumProduct Pty Ltd 2009 - 2024

Appending Files

Whilst it is possible to extract multiple CSV (comma separated values) files at the same time (more
on this later), imagine a scenario where similar files appear at intervals and need to be added to a
table.

In the same workbook, I repeat the process to extract data from a CSV file, and use the same steps
to transform the data. This time I have extracted Mary’s data:

I want to add this data to Derek’s data. I can do this by appending this query to Derek’s query. On
the Home tab there is a Combine section where there is an ‘Append Queries’ dropdown:

As the dropdown shows, I can either ‘Append Queries’ where I ‘Append this query to another query
in this workbook’ or I can ‘Append Queries as New’. Since the expense files are always required to
be uploaded together, the ‘Append Queries’ option is fine here.

I don’t need to choose the ‘Three or more tables’ option; I can simply select the other query from
the dropdown.

 SumProduct Pty Ltd

Page 15 of 126 © SumProduct Pty Ltd 2009 - 2024

The data appears in the same query, and a step is created in M code combining the data in the
current query with the Derek’s expense query that already exists. The number of columns remains
the same. If any columns had been duplicated, then I should check column names are the same
(including the same case and with no extra spaces) in both queries.

As before, I can ‘Close & Load’ to see the data in a new Excel sheet:

Further files can be appended using the same method as they arrive.

If I want to extract similar files at the same time, there is another option: extracting from a folder,
and that’s next…

 SumProduct Pty Ltd

Page 16 of 126 © SumProduct Pty Ltd 2009 - 2024

Extracting from a Folder

In this example I have 10 expense files in a folder called PQ_StandardExpenses. In a blank
workbook, I choose the ‘From File’ Option, and drop down to select ‘From Folder’.

A simple browse window appears, and having chosen the correct folder, the meta data is displayed:

 SumProduct Pty Ltd

Page 17 of 126 © SumProduct Pty Ltd 2009 - 2024

At this point, I could choose to combine these files and I’d be done, but editing allows the data to be
transformed, and some safety features to be added.

Some kind person has added some excel workbooks in the folder, not to mention a strange file
extension ‘kat’! I need to make sure nothing added to the folder in the future will mess up my
query. I can also allow for users typing in csv or CSV when they create their files. I opt to ‘Transform
Data’:

I start by transforming the Extension data to lowercase. I select the column and right-click to find
the ‘Transform’ to ‘lowercase’ option.

Next, I can filter to just get those files with file extension ‘csv’. At the top of the Extension column
there is a standard filter arrow: clicking on this reveals a number of options to transform the data in
the column.

 SumProduct Pty Ltd

Page 18 of 126 © SumProduct Pty Ltd 2009 - 2024

I could use the ‘Text Filter’, but instead, I will choose ‘csv’ from the radio list:

This generates a step to filter on ‘.csv’:

The query is now protected from stray workbooks and will include files with .csv and .CSV
extensions. Simple!

In order to transform the data in the files, I need to see the table contents, and not just the
metadata. Next to the Content column header is an icon which appears for binary files, and allows

the binary to be combined – the icon.

 SumProduct Pty Ltd

Page 19 of 126 © SumProduct Pty Ltd 2009 - 2024

Pressing the button with this icon makes the contents of each table appear under the table
headings:

This is just showing me the first file, and I am happy with the layout, so I click OK:

This process has been improved over time, and Power Query creates a ‘Helper Queries’ folder in the
Queries tab to help to transform my data.

 SumProduct Pty Ltd

Page 20 of 126 © SumProduct Pty Ltd 2009 - 2024

In previous versions, I had to promote headings and remove heading rows from each appended file,
but all of this has been done for me. I need to do is ‘Fill Down’ on the Name column using the same
method as before, by replacing blanks with nulls and right-clicking to ‘Fill Down’. I also rename
expense code and amount to ‘Expense Type’ and ‘Amount’, so that I will be able to append to other
expense files with no duplication.

My data is now ready for me to ‘Close & Load’ to the workbook:

Extracting from a folder is an efficient way to upload multiple expense files in a similar format, but
what if someone sends in a CSV file that has been configured differently? We deal with a simple
example of unpivoting data next…

Unpivoting Data

Not everyone sticks to the standard format on their expenses, as that would be far too convenient
for data analysts!

Let’s imagine PQ_NonStandardExpense_CSV has come in, and it is an expense csv which is not in
the usual format because John has configured his data ready to create a graph of where his expenses
go. Convenient for him, but not so great for appending to the existing expense query:

Luckily, Power Query has a button for this: in order to get this into our required column format I will
need to unpivot the data.

 SumProduct Pty Ltd

Page 21 of 126 © SumProduct Pty Ltd 2009 - 2024

The first step is importing the non-standard expense CSV as I did for the single CSV file earlier:

I browse to the file and select it:

I will choose ‘Transform Data’.

The first step for this example is to remove any unnecessary data – in this case John has added a
personal expense column which is not required in the model. However, rather than remove the
offending Personal column, it is safer to keep the columns that I know I need in order to append this
query to the other expenses. I hold CTRL while I select the columns I want to keep. Then I can right-
click and choose ‘Remove other Columns’. A tip here is to select and click whilst in the column
heading, otherwise Power Query can assume I am selecting a value in the column.

 SumProduct Pty Ltd

Page 22 of 126 © SumProduct Pty Ltd 2009 - 2024

Name can then be filled down using the same process that I used earlier: I replace the blank values
with null and then right-click on the Name column and choose to ‘Fill Down’.

I am ready to unpivot process – I select Name and Date as I plan to unpivot the other columns. In
the ‘Any Columns’ group on the ‘Transform’ tab there is an option to ‘Unpivot Columns’ – there are
two options, either unpivot the selected columns, or everything except the selected columns, which
can save time depending on the proportion of columns that need to be unpivoted.

 SumProduct Pty Ltd

Page 23 of 126 © SumProduct Pty Ltd 2009 - 2024

The unpivot options are also available by right-clicking any of the highlighted columns:

One click and everything is unpivoted as required!

The small changes left to do are to transform the unpivoted columns to match the other expenses. I
rename the headings by double-clicking and editing.

The data is then ready to be uploaded or appended to an existing expenses query as covered earlier.

Relationship between Power Query and Power Pivot

This is relevant to Power BI too. So far, I have concentrated on how to use Power Query as a
standalone tool. In a moment, I will look at extracting data from a table and loading to the Excel
model. This will allow the data to be manipulated by another Excel Add-in: Power Pivot. Therefore,
now I will take a look at the relationship between Power Query and Power Pivot.

I have shown that Power Query is a useful ETL (Extract, Transform and Load) tool. Well thought out
features allow data to be filtered, manipulated and merged. In addition to the previous examples
where I have loaded data into an Excel worksheet, loading to the Excel model allows further
modelling and analysis by Power Pivot.

Power Pivot can fine tune the Excel Model and then perform calculations so that the data is ready to
be displayed in PivotTables, charts or grids, or in a visualisation tool like Power View. Power Pivot
can create relationships between tables, and create formulas and KPI’s (Key Performance
Indicators). Power Pivot refines and builds on the Excel model created by Power Query. Next, I will
describe how to extract a table from a database, transform the data, and load it into the Excel model
ready for further analysis using Power Pivot.

 SumProduct Pty Ltd

Page 24 of 126 © SumProduct Pty Ltd 2009 - 2024

(Data) Model Building

Up until now, I have concentrated on extracting data from files and folders. For this example, I will
extract data from a table in a Microsoft Access database. Although I could use this data in an Excel
workbook as in the previous examples, this time I will add the table to the Excel data model, so that
it can be used by Power Pivot.

A quick glance at the drop down ‘From Database’ under ‘Get Data’ on the Data tab reveals a large
selection of different kinds of databases that can be accessed in order to extract data:

Choosing the ‘From Microsoft Access Database’ option allows me to browse for the database that I
will use. Having selected my database, the navigator screen lists all the tables in that database. I
choose to preview ‘ACCT_Order_Charges’:

 SumProduct Pty Ltd

Page 25 of 126 © SumProduct Pty Ltd 2009 - 2024

I choose to ‘Transform Data’.

I select the columns I want to keep whilst holding CTRL and right-click to ‘Remove other Columns’ as
I did for the CSV example.

 SumProduct Pty Ltd

Page 26 of 126 © SumProduct Pty Ltd 2009 - 2024

I can then use the ‘Close & Load’ option from the ‘File’ tab or the ‘Home’ tab:

I must choose ‘Close & Load To…’, which will allow me to specify how I want to load the data.

This gives me the option to ‘Add this data to the Data Model’. I also choose the ‘Connection Only’
option since I don’t need to see the table in the workbook. Since I have Power Pivot, I can go to
Power Pivot tab and select the Manage (data model) option; ‘ACCT_Order_Charges’ is visible in the
‘Workbook Queries’ pane.

Choosing to ‘Manage’ allows me to view the ‘ACCT_Order_Charges’ table in detail, ready to refine
the data further by adding calculated columns and creating and managing relationships with other
tables in the model.

 SumProduct Pty Ltd

Page 27 of 126 © SumProduct Pty Ltd 2009 - 2024

If I can edit the table in Power Query and Power Pivot, are there any problems to look out for? The
good news for Excel 2016 onwards and Office 365 users is that since Power Query has been fully
integrated into the ‘Get & Transform’ section, there is no choice between using Power Pivot or
Power Query. In earlier versions of Excel 2013, and in Excel 2010, it was possible to corrupt the Excel
model by making some types of changes in Power Pivot. The current version of Excel 2013 stops me
from making these changes in Power Pivot. And that is a good thing.

Starting with the Excel model I created above, I’ve decided to change the table name to make it
more user friendly:

Thus, having received the message in the screen shown above, I am directed back to Power Query to
rename the table. The reason that I am stopped from changing the name here is that in previous
versions of Excel 2013 and 2010 users could change the name in Power Pivot which then broke the
link between Power Query and Power Pivot. Therefore, there are some actions to be avoided in
Power Pivot if the Excel model has been created in Power Query:

 SumProduct Pty Ltd

Page 28 of 126 © SumProduct Pty Ltd 2009 - 2024

 do not change a table name in Power Pivot
 do not rename an imported column in Power Pivot
 do not delete an imported column in Power Pivot.

Any of these actions could result in a broken link between Power Query and Power Pivot.

It therefore makes sense to clean up data as much as possible in Power Query, renaming and
deleting as required. Although merging some tables and queries in Power Query can be useful to
avoid having unnecessary tables, don’t try to flatten all the data into one huge table. One of the
features of Power Pivot is the ability to manage relationships between tables, allowing keys to be
constructed as required. This is vital in creating accurate calculations and useful new columns to aid
analysis of data. As with most relationships, Power Query and Power Pivot work well together when
they are allowed to do what they are best at.

Next, I’ll take a look at merging queries in Power Query…

Merging Queries

Power Query allows me to merge tables (known as queries in Power Query), without either the need
to be an expert on database structure or without having to learn formulae. I only require two (or
more) existing queries.

I have a query ACCT_Order_Charges which I have extracted from a Microsoft Access database, and I
want to merge data from another table so that I can include a description of the type of items that
the charges apply to.

Starting in the workbook containing the ACCT_Order_Charges query, I create a new query. Since I
have already made the connection to the database, I can use the ‘Recent Sources’ button on the
Data tab.

 SumProduct Pty Ltd

Page 29 of 126 © SumProduct Pty Ltd 2009 - 2024

I select the database, and the Navigator dialog appears:

I select the ‘Transform Data’ option.

I select Item_Key, Item_Group and Item_Name and right-click to ‘Remove other Columns’. These
are the fields I will need to merge the data with ACCT_Order_Charges.

 SumProduct Pty Ltd

Page 30 of 126 © SumProduct Pty Ltd 2009 - 2024

I do not wish to make further changes, so from the Home tab I select ‘Close & Load to…’ from the
‘Close & Load’ button:

Note that the Items query appears in the ‘Queries & Connections’ pane, but is not complete yet.
Having made my selections as shown above, I choose to ‘Load’.

There are several ways I can access the option to merge my queries. I can double-click on either
query to access the Power Query Editor, or I can right-click on one of the queries:

 SumProduct Pty Ltd

Page 31 of 126 © SumProduct Pty Ltd 2009 - 2024

The Merge dialog appears where I choose my two queries:

The dropdown at the bottom of the screen allows me to choose how to link the tables. In this case, I
choose ‘Left Outer’, as I want all of the ACCT_Order_Charges table and matching data from Items (if
I had input Items first then I would pick ‘Right Outer’). This is the point where some understanding
of the data is required; picking ‘Full Outer’ may lead to duplicates.

The ‘OK’ button is not enabled yet. This is because I need to pick the columns to join. In this case, I
want to join Item_Key in both tables, so I select this field on each table. When I select the same
number of columns in each table, then ‘OK’ is enabled, and the number of connections is displayed:

 SumProduct Pty Ltd

Page 32 of 126 © SumProduct Pty Ltd 2009 - 2024

I click OK, and am taken into the Power Query Editor:

Merge1 contains the columns from ACCT_Order_Charges, and a new column called Items. Note the
icon next to it with two arrows pointing away from each other: this will expand to show the new
columns available:

I can uncheck columns that are already in the first table to prevent duplication. In this case
description is very similar to Item_Name so I uncheck Item_Name and Item_Key (since I only
included the key to enable me to link the table data).

I unselect ‘Use original column name as prefix’. I would only need to choose this option if the table
already contained a column with the same name.

 SumProduct Pty Ltd

Page 33 of 126 © SumProduct Pty Ltd 2009 - 2024

Note that the order of the rows has changed because the non-linked rows which had no item key
have moved to the bottom.

 I can fix this by sorting on Order_Key and Order_Line_Number. There is a downward arrow icon
next to each column heading which I can click and then choose to sort in ascending order.

Having done this for both columns, Power Query combines these sorts into one step. I also choose
to rename the table to something more meaningful than Merge1.

 SumProduct Pty Ltd

Page 34 of 126 © SumProduct Pty Ltd 2009 - 2024

I can now ‘Close & Load’ to create a new merged table, which can be used in Excel workbooks and
the Excel data model. When merging queries do keep in mind the warnings above; if the queries are
for use by Power Pivot only, then consider whether it would be more useful to load one merged
table or separate tables that may be managed in Power Pivot. However, for creating Excel
workbooks, merging is a useful way of pulling in data from many tables in order to view the data in a
single table. Data may of course come from other external sources.

Next, I will look at extracting data from a website…

Extracting from a Website

Whilst Power Query will allow data to be extracted from the web, for many webpages, some
knowledge of HTML is needed, and even then, a great deal of transformation is often required to get
the data into a tabular form. However, if the page uses tables, then the data can be much easier to
extract. Today, I show how to extract data from a webpage that holds information in a table.

For my example, I will use an excellent webpage which provides a list of training events by Excel
specialists: perhaps it looks familiar?

 SumProduct Pty Ltd

Page 35 of 126 © SumProduct Pty Ltd 2009 - 2024

On this page, there is a table of upcoming courses:

I start in the ‘Get & Transform Data’ section on the Data tab, by choosing to get my data ‘From Web’.

The window that pops up gives me a choice of ‘Basic’ or ‘Advanced’ options. I could have used the
basic option since my full web page is fairly short, but I have chosen the advanced option to show
how webpage addresses may be built.

I have chosen to access https://www.sumproduct.com/courses; I can opt to set timeouts if I find I
am having problems with a particular website, but I will choose not to set any in this example (since I
know how great this website is!).

 SumProduct Pty Ltd

Page 36 of 126 © SumProduct Pty Ltd 2009 - 2024

If I were accessing www.sumproduct.com for the first time, then I would be prompted to confirm
the authentication options, which default to ‘Anonymous’. It is possible to see the same
authentication options from ‘Data Source Settings’ at the bottom of the ‘Get Data’ dropdown:

I select the settings for SumProduct:

 SumProduct Pty Ltd

Page 37 of 126 © SumProduct Pty Ltd 2009 - 2024

I have chosen to use the anonymous setting, since the webpage I am viewing does not require any
password or other security information. Future queries accessing the same website will use the
existing authentication settings.

Once the authentication method has been defined, Power Query links to the webpage and returns
the recognised content.

The navigator pane shows that Power Query has identified a document and a table. The document
highlighted clearly doesn’t show any recognisable data about courses. More work would be
required in order to obtain useful information from this. The table, however, proves more fruitful,
as shown below:

 SumProduct Pty Ltd

Page 38 of 126 © SumProduct Pty Ltd 2009 - 2024

I have a list of courses, and I choose to ‘Transform Data’ ready to load to an Excel workbook.

It all looks good, so I rename the query SumProduct Courses and ‘Close & Load’.

The link to the webpage may be refreshed in the same way as other data sources. A word of
caution, however: in this case, I have used a reliable source, which I know will be well maintained,
and which will not be subject to abrupt format changes without warning. Using content which I
have no control over is risky and can lead to bad decisions being taken as a result of using out of
date or erroneous data.

 SumProduct Pty Ltd

Page 39 of 126 © SumProduct Pty Ltd 2009 - 2024

Introduction to M

For users already familiar with Power Pivot and Data Analysis eXpressions (DAX, the associated
programming language), it might seem logical that Power Query would use a similar language and
perhaps even the same formulae. Not so. Power Query has its own language, M, and its own
formula syntax. So, having abandoned any expectation of familiarity, I need a good place to start
looking at M language. I will create a custom column and look at a formula that can be associated
with that new column.

I start out in the worksheet for the merged query I created earlier and open
ACCT_Order_Charges_with_Group to access the query editor. On the ‘Add Column’ tab, I choose to
‘Custom Column’:

The dialog box has a large section for the formula beneath the name I choose for my new custom
column. Available columns in the query are shown and double clicking them adds them to the
formula (or I can select and then choose to ‘Insert’ them).

Notice the option to ‘Learn about Power Query formulas’ at the bottom of the dialog box. This is the
best place to find out what formulae are available in Power Query. Clicking here will take me to the
Microsoft help page, which has a links to explain the Power Query M language and the functions
available.

Having said that the formulae do not tend to match those for Power Pivot, there are some functions
that are reassuringly familiar from Excel, as I will show now by concatenating two existing columns.

I decide to create a column that combines Item_Group and Description by double clicking each
column (or using ‘Insert’). I type in an ‘&’ between the columns, which is the same as I would do in
an Excel formula, and include a ‘/’ to separate the data in the column to make it easier to read:

 SumProduct Pty Ltd

Page 40 of 126 © SumProduct Pty Ltd 2009 - 2024

I click ‘OK’ and my custom column is generated, ready to be loaded to my worksheet.

There are other similarities with Excel: the symbols ‘+’, ’-‘, ’*’ and ‘/’ are used for add, subtract,
multiply and divide respectively too.

There are however some points to bear in mind when comparing Power Query formulae with Excel:

 Excel formulae are not case sensitive, but Power Query formulae are (this is a classic gotcha)
 Excel counts using a base of one [1] (e.g. the first letter in a string is at position 1), but

Power Query uses a base of zero [0] (so the same letter would be at position 0)
 Excel will automatically convert data (e.g. concatenating a text column to a numerical

column will work as Excel converts them to text automatically); Power Query will not (e.g.
trying to concatenate text to a value will give errors in the new column – the value must be
converted to text first). This is why I picked two text columns for my example above.

If I go to the ‘Advanced Editor’ on the Home tab, I can see all the code for the current query.

 SumProduct Pty Ltd

Page 41 of 126 © SumProduct Pty Ltd 2009 - 2024

This allows me to view a short section of M language, which demonstrates some of the M language
syntax rules:

The first line of every query must begin with ‘let’:

let
 Source = Table.NestedJoin(ACCT_Order_Charges, {"Item_Key"}, Items, {"Item_Key"}, "Items",
JoinKind.LeftOuter),
 #"Expanded Items" = Table.ExpandTableColumn(Source, "Items", {"Item_Group"},
{"Item_Group"}),
 #"Sorted Rows" = Table.Sort(#"Expanded Items",{{"Order_Key", Order.Ascending},
{"Order_Line_Number", Order.Ascending}}),
 #"Added Custom" = Table.AddColumn(#"Sorted Rows", "Custom", each [Item_Group] & "\" &
[Description])
in
 #"Added Custom"

In this case, I have five lines which refer to steps defining the source of the query (which I can see in
the ‘APPLIED STEPS’ section in the Power Query Editor) and data manipulation. Some of the steps in
the Advanced Editor are preceded by a ‘#’, but more on this in a moment. The lines are separated
by a comma (‘,’). The end of the query is indicated by ‘in’ and a further step:

 in
 #"Added Custom"

This tells Power Query which step to return to once the query has been executed, in this case ‘Added
Custom’. The ‘#’ at the beginning of some of the lines is a message to Power Query to ignore the
spaces in the names (e.g. in ‘Sorted Rows’). This is useful to know when creating steps manually.

The steps are sequential, and need to be linked to the previous step. Hence, the ‘Sorted Rows’ step
refers to the ‘Renamed Columns’ step and the ‘Renamed Columns’ step refers to the ‘Expanded
NewColumn’, etc. When inserting lines, I must adjust the surrounding lines to make sure the
sequence is intact, otherwise I will get an error. Power Query has moved on since it was first
created, and now if I am working with the Power Query editor, I can use the GUI interface to insert
steps, and Power Query will automatically adjust the step names on the next step as required.

 SumProduct Pty Ltd

Page 42 of 126 © SumProduct Pty Ltd 2009 - 2024

The lines are quite long and can get quite convoluted, so I can edit the format to make it easier to
read:

I have split the lines up to make them less of a long list of code. This may be useful when trying to
keep track of whether all brackets have been closed (and closed in the right place). I have also
inserted a single comment by preceding the line with ‘//’, and a section of comments by preceding
with ‘/*’ and ending with ‘*/’. Users of earlier versions of Power Query may notice that the ‘token
comma’ is now not needed after a comment section: do be guided by the syntax checker.

 SumProduct Pty Ltd

Page 43 of 126 © SumProduct Pty Ltd 2009 - 2024

The checker is at the bottom of the screen which will warn me if the syntax is wrong and allow me to
jump to the error.

A more recent development in Power Query is to make the comments visible from ‘APPLIED STEPS’:

The next sections are all about building a Calendar query. The four steps are:

 Step 1: Create a table called Parameters in an Excel Worksheet to hold the calendar
boundaries

 Step 2: Create a function fnGetParameter which uses the calendar boundaries as its
parameters

 Step 3: Build the basic dynamic calendar framework
 Step 4: Add any required calendar columns.

 SumProduct Pty Ltd

Page 44 of 126 © SumProduct Pty Ltd 2009 - 2024

Creating a Calendar – Step 1: Creating Parameters

In a new blank Excel Worksheet, I create a new table with some specific properties. My table is
called Parameters and has two columns, Parameter and Value.

To begin, I will open a new blank Excel worksheet – in the ‘Insert’ Section, there is an option to
‘Insert Table’ which brings up a ‘Create Table’ dialogue box (CTRL + T is the shortcut). I choose an
area that covers two columns and three rows (I chose A7:B9 in the example shown below). I check
the box ‘My Table has Headers’ and click OK.

Just as an aside, normally here at SumProduct, we will advocate always starting Tables in cell A1 and
calling the worksheet the same name as the Table. I am not going to do that here to show it is not
necessary, but there is merit in doing this if data is exported to other programs too. It’s best to give
data exporting a “helping hand” on occasion.

Returning to my example, the ‘Table Name’ can be changed in the top left of the screen and must be
set to Parameters. Clicking on the column names allows me to set them to Parameter and Value:

 SumProduct Pty Ltd

Page 45 of 126 © SumProduct Pty Ltd 2009 - 2024

The parameters the function will be using are Start Date and End Date, and these are the entries in
my first column. In the second column I enter the date I wish my calendar to begin at, and a formula
that will show the last day of the current month.

Parameter Value

Start Date 1/1/2016

End Date =EOMONTH(TODAY(),0)

This may look like a long number to begin with: the data format on the column needs to be set to
Short Date as shown below:

My Parameter table is now ready for the fnGetParameter function:

 SumProduct Pty Ltd

Page 46 of 126 © SumProduct Pty Ltd 2009 - 2024

Creating a Calendar – Step 2: Create the fnGetParameter Function

I choose to create a new blank query by going to the ‘From Other Sources’ section of the ‘Get Data’
dropdown and choosing ‘Blank Query’ from the dropdown:

In the ‘Query Editor’ screen, I choose the ‘Advanced Editor’ from the ‘Home’ tab.

I enter the following M language:

(ParameterName as text) =>
 let
ParamSource = Excel.CurrentWorkbook(){[Name="Parameters"]}[Content],
ParamRow = Table.SelectRows(ParamSource, each ([Parameter]=ParameterName)),
 Value=
 if Table.IsEmpty(ParamRow)=true
 then null
 else Record.Field(ParamRow{0},"Value")
in

 SumProduct Pty Ltd

Page 47 of 126 © SumProduct Pty Ltd 2009 - 2024

 Value

I then rename the query fnGetParameter.

When I choose to ‘Close and Load’ from the ‘Home’ tab the new query automatically saves as
connection only. Double-clicking on it invokes the function:

Now I have my parameters and a function which will read them, so that I may create my calendar
framework and add columns to create a useful calendar.

Creating a Calendar – Step 3: Build Framework

Now I have set up my parameters and created a function to extract the values, I can begin to build
my calendar. In the worksheet I created last time, I will start by creating another blank query,
following the same procedure as before, and this time I will call it Calendar. The process I follow to
create my calendar framework is to build a list of dates between the two parameters that I have
specified.

 SumProduct Pty Ltd

Page 48 of 126 © SumProduct Pty Ltd 2009 - 2024

I begin by entering a simple list in the formula bar:

= {1..10}

This gives a column of 10 numbers, which I can prepare for calendar format by transforming. Notice
that Power Query automatically presents me with options for transforming a list.

In the ‘Convert’ section I choose to convert my list ‘to Table’, and take the default options:

 SumProduct Pty Ltd

Page 49 of 126 © SumProduct Pty Ltd 2009 - 2024

In the resulting table I right click my column and ‘Change Type’ to ‘Date’, and then rename my
column Date.

They may not be current, but they are dates! Now I need my parameters.

I choose the ‘Advanced Editor’ from the ‘Home’ section. The editor shows the lines already created
as a result of the transforming I have done. The ‘Source’ step currently shows my original list of 10
numbers: I need to change the source to look at my parameters instead of 1 and 10. Therefore,
after ‘let’ and before the ‘Source’ line, I need to add my parameters, which I will call startdate and
enddate thus:

startdate = fnGetParameter(“Start Date”),
enddate = fnGetParameter(“End Date”),

However, if I try this, I get the following error:

This is because I started with a list of numbers and then I tried to use dates instead. I need to
express the dates as numbers, so I need to use the Number.From function:

startdate = Number.From(fnGetParameter(“Start Date”)),
enddate = Number.From(fnGetParameter(“End Date”)),

 SumProduct Pty Ltd

Page 50 of 126 © SumProduct Pty Ltd 2009 - 2024

When I use these definitions instead, my query returns a column of dates:

Creating a Calendar – Step 4: Adding More Date Columns

Although I have a calendar, it is a very basic calendar. A few more columns would be useful. For
this, I am going to repeatedly use the ‘Date’ section of the ‘Add Column’ tab and use the options that
are shown on the dropdown below:

I choose to add the ‘Year’, ‘Month’, ‘Day’ and ‘Quarter (of Year)’ options. It doesn’t matter what
order I create them in as I can drag the columns to change the order:

 SumProduct Pty Ltd

Page 51 of 126 © SumProduct Pty Ltd 2009 - 2024

On the ‘Home’ tab, I then choose to ‘Close and Load’ to see that all the Calendar entries have been
created as I expected. The entries automatically appear in a separate sheet to my Parameters table:

My calendar is ready for use.

More on Parameters

Parameters are not just useful for creating Calendars. In this extended section I look at some other
uses:

I am looking at some exam results:

 SumProduct Pty Ltd

Page 52 of 126 © SumProduct Pty Ltd 2009 - 2024

I will be grading the results and I will be using this example to explore parameters. I’ll start by
extracting my data into Power Query, where I will create the grade column. To extract my data, I
choose ‘From Table/Range’ from the ‘Get & Transform’ section of the Data tab.

Conditional Columns

I have called my query Exam Results. I will begin by creating a Conditional Column from the ‘Add
Column’ tab:

I call the new column Grade, and create the grade bands for the results. Each Clause will look at
whether the Result ‘is greater than’ a Value, and I will start with the highest grade.

For now, I will be entering values, but I plan to replace this with parameters later.

 SumProduct Pty Ltd

Page 53 of 126 © SumProduct Pty Ltd 2009 - 2024

I create a Clause for each band.

Note that, if I miss one, I can add it later and then change the order using the menu next to each
Clause.

 SumProduct Pty Ltd

Page 54 of 126 © SumProduct Pty Ltd 2009 - 2024

I click OK to see the new column:

The M code generated for this step is as follows:

Table.AddColumn(#"Changed Type", "Grade", each if [Result] > 90 then 9 else if [Result] >
80 then 8 else if [Result] > 70 then 7 else if [Result] > 60 then 6 else if [Result] > 50
then 5 else if [Result] > 40 then 4 else if [Result] > 30 then 3 else "Ungraded")

I can change this in the Advanced Editor, which I access from the Home tab. I want to format it so
that the boundaries are easier to see. I can split each step over any number of lines, a comma (,) or
(as in this case) the ‘in’ statement indicates when the step is complete.

 SumProduct Pty Ltd

Page 55 of 126 © SumProduct Pty Ltd 2009 - 2024

Power Query Parameters

I am now ready to create some parameters to decide the grades.

To begin with, I will enter these parameters from the ‘Manage Parameter’ option on the Home tab:

 SumProduct Pty Ltd

Page 56 of 126 © SumProduct Pty Ltd 2009 - 2024

I opt to create a ‘New Parameter’. This brings up a dialog:

 SumProduct Pty Ltd

Page 57 of 126 © SumProduct Pty Ltd 2009 - 2024

I am going to enter a parameter for each grade. I call my first parameter P_Grade_9:

 SumProduct Pty Ltd

Page 58 of 126 © SumProduct Pty Ltd 2009 - 2024

The ‘P_’ is to indicate it is a parameter. This will make it easy to spot in the list of queries. I also
enter a description. When I choose the Type, there is no option for percentage, so I make it a
‘Decimal Number’ instead.

 SumProduct Pty Ltd

Page 59 of 126 © SumProduct Pty Ltd 2009 - 2024

For now, I will allow ‘Any value’. I will be revisiting the ‘Suggested Values’ dropdown for this
example later.

To complete this parameter, I enter a ‘Current Value’ of 90. If I were to click ‘OK’ at this point, the
parameter would be created, and I would automatically exit the dialog:

I can see the parameter in the Queries panel. If the parameter is selected, then I can edit the
‘Current Value’ if I wish. The ‘Current Value’ also appears next to the parameter in brackets ‘(90)’ so
that I can always see what it is set to in the Queries panel.

 SumProduct Pty Ltd

Page 60 of 126 © SumProduct Pty Ltd 2009 - 2024

If I want to create multiple parameters, then I can stay in the ‘Manage Parameter’ dialog by clicking
‘New’ instead of ‘OK’ when I have finished each parameter:

Note that since my parameters are similar, I can also copy and paste or create Duplicates:

This is fine, as long as I remember to change the name, description and ‘Current Value’. Do not
create a ‘Reference’. This would return the ‘Current Value’ of the parameter:

The icon next to P_Grade_8 (2) indicates a number. Note also that the ‘(2)’ in this case is created
because there is already a P_Grade_8 and is not the value!

 SumProduct Pty Ltd

Page 61 of 126 © SumProduct Pty Ltd 2009 - 2024

I now have all my parameters ready for the next step:

I can now edit the original query using the Advanced Editor, which I access from the Home tab:

 SumProduct Pty Ltd

Page 62 of 126 © SumProduct Pty Ltd 2009 - 2024

I change the M code in the ‘Added Conditional Column’ step from:

Table.AddColumn(#"Changed Type", "Grade", each
 if [Result] > 90 then 9
 else if [Result] > 80 then 8
 else if [Result] > 70 then 7
 else if [Result] > 60 then 6
 else if [Result] > 50 then 5
 else if [Result] > 40 then 4
 else if [Result] > 30 then 3
 else "Ungraded")

to

Table.AddColumn(#"Changed Type", "Grade", each
 if [Result] > P_Grade_9 then 9
 else if [Result] > P_Grade_8 then 8
 else if [Result] > P_Grade_7 then 7
 else if [Result] > P_Grade_6 then 6
 else if [Result] > P_Grade_5 then 5
 else if [Result] > P_Grade_4 then 4
 else if [Result] > P_Grade_3 then 3
 else "Ungraded")

I can use the Intellisense to make sure I enter the correct name for each parameter:

 SumProduct Pty Ltd

Page 63 of 126 © SumProduct Pty Ltd 2009 - 2024

I also rename the step to ‘Assigned Grade’:

I click ‘Done’ to make sure that the query still works as I expect:

 SumProduct Pty Ltd

Page 64 of 126 © SumProduct Pty Ltd 2009 - 2024

Using Defined Names as Parameters

Whilst I can change these parameters in Power Query, I’d now like to have parameters that I can
change from Excel. On a new Excel Sheet, I have some data for the thresholds:

I start by defining a Name for the first threshold. I can do this by selecting the cell and right-clicking:

I define the Name to be ‘Grade_9’:

 SumProduct Pty Ltd

Page 65 of 126 © SumProduct Pty Ltd 2009 - 2024

I can now see this in Power Query. In the Power Query Editor, I create a new Blank Query. I can do
this by right-clicking in the Queries pane (this is one of several methods to create a Blank Query):

 SumProduct Pty Ltd

Page 66 of 126 © SumProduct Pty Ltd 2009 - 2024

In my Blank Query, I enter the following M code:

= Excel.CurrentWorkbook()

This will show me what is in the current Excel Workbook:

There is the Grade_9 I created. The value will be in the ‘Table’ next to it.

I filter Name to get just the ‘Grade_9’ row:

This gives me just one table:

I click on the green ‘Table’.

 SumProduct Pty Ltd

Page 67 of 126 © SumProduct Pty Ltd 2009 - 2024

I now have the value of Grade_9 in the column. I can remove the ‘Changed Type’ step and right-click
and drill down on the value.

This gives me the value, and I now rename my query DP_Grade_9:

Since this query returns a value, the icon next to it indicates a whole number:

Note that when I ‘Close & Load’ my queries to Excel, I should make sure that DP_Grade_9 is set to
‘Connection Only’:

 SumProduct Pty Ltd

Page 68 of 126 © SumProduct Pty Ltd 2009 - 2024

This is a default for queries created as Parameters in Power Query, but not for DP_Grade_9, as it has
been created from a query. This brings me to another point. I right-click on DP_Grade_9 in the
Queries pane. There is an option to ‘Convert to Parameter’ but it is greyed out.

Whilst the final result of my query is a single value, I am not allowed to convert it. This option is only
available if I create a very simple query which equals a value. I can create a new Blank Query to
demonstrate this by right-clicking in the Queries pane:

I create a query which is set to a single text value:

 SumProduct Pty Ltd

Page 69 of 126 © SumProduct Pty Ltd 2009 - 2024

The M code I used to create this is simply:

= “This can be converted to a parameter”

When I right click on this query in the Queries pane,

I can ‘Convert to Parameter’ and it looks just like the other ‘P_Grade…’ parameters that I created:

 SumProduct Pty Ltd

Page 70 of 126 © SumProduct Pty Ltd 2009 - 2024

I would like this to be available for queries like DP_Grade_9 too, so that I could have the current
value in brackets and the ability to select it as a parameter from other functions. However, this is
not an option. I suspect this is because the query is converted to Metadata, as indicated by the
Advanced Editor view of I am a parameter:

The previous source step is no longer available. This would imply that I can’t keep the previous steps
of DP_Grade_9 and convert it to a parameter. I’ve seen this question on forums, and this is my
conclusion!

I now define names for all the cells that I want to use as parameters:

 SumProduct Pty Ltd

Page 71 of 126 © SumProduct Pty Ltd 2009 - 2024

If I go to the DP_Grade_9 query in the Power Query Editor, I can view the Source step:

I ‘Refresh Preview’, using the option on the Home tab:

I notice that the other named cells now appear:

 SumProduct Pty Ltd

Page 72 of 126 © SumProduct Pty Ltd 2009 - 2024

I can create a duplicate of DP_Grade_9:

I can use this as a template to create the other queries:

I have renamed the duplicate query, and I click on the cog next to ‘Filtered Rows’ to amend the value
of Name selected to ‘Grade_8’. Note that the step ‘Grade_9’ will also need to be edited, as I will see
as soon as I click OK and move to that step.

 SumProduct Pty Ltd

Page 73 of 126 © SumProduct Pty Ltd 2009 - 2024

This step is trying to expand the Content column which corresponds to the Name ‘Grade_9’. The M
code is:

= #"Filtered Rows"{[Name="Grade_9"]}[Content]

I can change this to:

= #"Filtered Rows"{[Name="Grade_8"]}[Content]

I have the correct result, but I should also right-click on the step and change the name to avoid
confusion:

 SumProduct Pty Ltd

Page 74 of 126 © SumProduct Pty Ltd 2009 - 2024

I have completed this query:

I repeat this process for the other named cells:

I will now apply these parameters to the Exam Results query and check that any changes to the
Excel cells affect the outcome of the query.

I now return to the Exam Results query.

 SumProduct Pty Ltd

Page 75 of 126 © SumProduct Pty Ltd 2009 - 2024

The easiest way to change the query to use the Excel controlled parameters is by editing in the
Advanced Editor, which I can access from the Home tab:

The ‘Assigned Grade’ step is changed from:

#"Assigned Grade" =
 Table.AddColumn(#"Changed Type", "Grade", each
 if [Result] > P_Grade_9 then 9
 else if [Result] > P_Grade_8 then 8
 else if [Result] > P_Grade_7 then 7
 else if [Result] > P_Grade_6 then 6
 else if [Result] > P_Grade_5 then 5
 else if [Result] > P_Grade_4 then 4
 else if [Result] > P_Grade_3 then 3
 else "Ungraded")

to

#"Assigned Grade" =
 Table.AddColumn(#"Changed Type", "Grade", each
 if [Result] > DP_Grade_9 then 9
 else if [Result] > DP_Grade_8 then 8
 else if [Result] > DP_Grade_7 then 7
 else if [Result] > DP_Grade_6 then 6
 else if [Result] > DP_Grade_5 then 5
 else if [Result] > DP_Grade_4 then 4
 else if [Result] > DP_Grade_3 then 3
 else "Ungraded")

 SumProduct Pty Ltd

Page 76 of 126 © SumProduct Pty Ltd 2009 - 2024

This works because each ‘DP_’ query represents one value:

This currently has no effect on the results of the query, since the values are the same:

 SumProduct Pty Ltd

Page 77 of 126 © SumProduct Pty Ltd 2009 - 2024

However, it does have an effect on the screen accessed by clicking on the cog (gear icon) next to the
‘Assigned Grade’ step:

Note that I cannot view the Value column now. Any changes must be made directly to the M code,
either from the Advanced Editor or the Formula Bar:

Back in Excel, if I change the Named cell Grade_3 from 30 to 20 percent, the outcome will change
when I refresh the Exam Results query:

 SumProduct Pty Ltd

Page 78 of 126 © SumProduct Pty Ltd 2009 - 2024

If I go back to Exam Results and view all the data, I can see that everyone has passed now!

Using Parameters as Locations

However, I now want to store the grading bands in a separate workbook away from the exam
results.

Back in my original workbook, I need to extract the data. I can do this by creating a new query from
the ‘Get Data’ dropdown in the ‘Get & Transform’ section of the Data tab. Note that to extract data
‘From Workbook’, the Excel file I am extracting from must not be open.

 SumProduct Pty Ltd

Page 79 of 126 © SumProduct Pty Ltd 2009 - 2024

In the dialog, I find the workbook I wish to use:

I can then choose to ‘Import’.

 SumProduct Pty Ltd

Page 80 of 126 © SumProduct Pty Ltd 2009 - 2024

In the Navigator dialog, I can see the Named Cells and the ‘Parameters’ Sheet. I select Grade_9:

I plan use to this as my base query. I opt to ‘Transform Data’:

I am interested in the Source step:

The Source step points at the Excel file I have created. To reduce future maintenance, and to add
flexibility I am going to create a base query which only includes the Source step, and then I am going
to use a parameter to point to the file location. If I have a base query, then any changes I make to
the Source step only need to be made once. I delete the other steps and call the query ‘Base
Query’:

 SumProduct Pty Ltd

Page 81 of 126 © SumProduct Pty Ltd 2009 - 2024

I create a new Parameter from the ‘Manage Parameters’ option on the Home tab:

I call the new Parameter FilePath:

I define the type as ‘Text’ and enter the ‘Current Value’ as the location of the external workbook that
contains the grading bands. Having created the FilePath parameter, I return to Base Query. For me,
the M code for the Source step is:

= Excel.Workbook(File.Contents("C:\Users\kathr\OneDrive\Documents\SUMPRODUCT\PQ Blog\Blog
270 Exam Grade Bands.xlsm"), null, true)

 SumProduct Pty Ltd

Page 82 of 126 © SumProduct Pty Ltd 2009 - 2024

I am going to replace the path with the FilePath parameter:

= Excel.Workbook(File.Contents(FilePath), null, true)

This is easier to read, and now I can change the path by changing the FilePath parameter.

I can now select Base Query in the Queries panel and right-click to create reference queries which
will become the new grade band Parameters:

I rename the first new query EDP_Grade_9. The Source step points to Base Query. I can click on the
‘Table’ text next to Grade_9 to expand the data for that row:

 SumProduct Pty Ltd

Page 83 of 126 © SumProduct Pty Ltd 2009 - 2024

This gives me the data for Grade_9 from the workbook, and I can right-click and drill down to the
value:

This gives me the first parameter:

I can then make more references of Base Query and repeat this process to get the other
‘EDP_Grade_’ parameters.

I can go back to the Exam Results query and use these parameters.

 SumProduct Pty Ltd

Page 84 of 126 © SumProduct Pty Ltd 2009 - 2024

I showed earlier that it is not possible to edit using the cog next to the ‘Assigned Grade’ step to
change the parameters, as they are not shown in the dialog unless they are true Power Query
parameters. I also looked at the difference between Power Query parameters and other queries
that can be used as parameters.

I use the Advanced Editor, available on the Home tab, to change the M code:

I change the ‘Assigned Grade’ step from this:

#"Assigned Grade" =
 Table.AddColumn(#"Changed Type", "Grade", each
 if [Result] > DP_Grade_9 then 9
 else if [Result] > DP_Grade_8 then 8
 else if [Result] > DP_Grade_7 then 7
 else if [Result] > DP_Grade_6 then 6
 else if [Result] > DP_Grade_5 then 5
 else if [Result] > DP_Grade_4 then 4
 else if [Result] > DP_Grade_3 then 3
 else "Ungraded")

to this:

#"Assigned Grade" =
 Table.AddColumn(#"Changed Type", "Grade", each
 if [Result] > EDP_Grade_9 then 9
 else if [Result] > EDP_Grade_8 then 8
 else if [Result] > EDP_Grade_7 then 7
 else if [Result] > EDP_Grade_6 then 6
 else if [Result] > EDP_Grade_5 then 5
 else if [Result] > EDP_Grade_4 then 4
 else if [Result] > EDP_Grade_3 then 3
 else "Ungraded")

This has no immediate effect on the results of the query:

 SumProduct Pty Ltd

Page 85 of 126 © SumProduct Pty Ltd 2009 - 2024

To show how FilePath allows me to point to another workbook, I have another workbook where I
have the same Named Cells for grading bands set up. You should note that I must close the Power
Query Editor in the workbook containing Exam Results before I can edit another workbook, so I
‘Close & Load To’ and choose ‘Connection Only’ for the new ‘EDP_Grade_’ queries and Base Query:

 SumProduct Pty Ltd

Page 86 of 126 © SumProduct Pty Ltd 2009 - 2024

The new workbook I have created has different values for the grading bands:

The workbook also has a different name and is located in a different folder.

I close the new workbook, and go back to the workbook containing the Exam Results query, where I
select the FilePath parameter in the Queries pane, and use the ‘Manage Parameter’ button to access
the dialog:

 SumProduct Pty Ltd

Page 87 of 126 © SumProduct Pty Ltd 2009 - 2024

I change the ‘Current Value’ to the new workbook name and location:

When I go back to the Exam Results query, the results have changed:

The results have changed, and it’s not looking good for the class!

Note that if users of the workbook containing Exam Results needed to maintain the FilePath
parameter without editing in Power Query, I could link FilePath to a Named Excel Cell in the
workbook as I have done for the ‘DP_Grade_’ and ‘EDP_Grade_’ parameters.

 SumProduct Pty Ltd

Page 88 of 126 © SumProduct Pty Ltd 2009 - 2024

Importing from PDF Files

This example will allow me to look at both importing PDF files and splitting columns.

Business is doing well, and the UK division of my company has plans to expand the workforce. I have
a PDF file, with data for 10 stores. The information could change for any of those stores, and the
way that the information is given is similar to the following:

or maybe like this:

or even like this:

My goal is to get all this information into one table.

Somewhere in the middle of my data, I have some text, which although very useful to the company,
is no help to me.

‘There may be plans to build a further store which would require a new workforce, but planning
permission has not been granted. Also, we would like to see the Projected Pay increases on the
report.’

This could be added to, reduced or removed.

However, there is also another table, which I do wish to extract, although not in its current form
(that would be too easy!).

 SumProduct Pty Ltd

Page 89 of 126 © SumProduct Pty Ltd 2009 - 2024

This means I don’t know how many pages are in the PDF. I would normally expect to see data for 10
stores, and they are all split into three [3] pay scales.

I start in an empty Excel Workbook, in the ‘Get and Transform’ section of the Data tab, where I will
use ‘Get Data’ and then ‘From File’, where I may choose ‘From PDF’.

 SumProduct Pty Ltd

Page 90 of 126 © SumProduct Pty Ltd 2009 - 2024

This allows me to browse to choose the PDF I want to extract. I am then presented with the
following dialog:

This is my first decision: I need to know whether to pick tables or pages. The best way to decide this
is to look at what is in them by selecting one of them for preview.

 SumProduct Pty Ltd

Page 91 of 126 © SumProduct Pty Ltd 2009 - 2024

I skip to the end of the content list, and look at one of the tables:

Not much in there, do I really need to get every table? There’s not even a way to link this to a store.

 SumProduct Pty Ltd

Page 92 of 126 © SumProduct Pty Ltd 2009 - 2024

I look at what is in the pages:

Definitely more data, and stores are also included. I can select multiple items, but do I select all the
pages? What if there are more next time?

There is an easier way. If I select the folder icon, I have other options…

I can ‘Transform Data’. This means all the data in the folder will be loaded into Power Query. This is
exactly what I want.

 SumProduct Pty Ltd

Page 93 of 126 © SumProduct Pty Ltd 2009 - 2024

Here it is. All the tables, and all the pages. The M code for this is:

= Pdf.Tables(File.Contents("FileLocation\Blog 250 Sample PDF.pdf"), [Implementation="1.3"])

FileLocation is where I have stored the file on my PC, and ‘Blog 250 Sample PDF’ is the name of the
file.

This is using the M function Pdf.Tables():

Pdf.Tables(pdf as binary, optional options as nullable record) as table

This returns any tables found in pdf. An optional record parameter, options, may be provided to
specify additional properties. The record can contain the following fields:

 Implementation: the version of the algorithm to use when identifying tables. Old versions
are available only for backwards compatibility, to prevent old queries from being broken by
algorithm updates. The newest version should always give the best results. Valid values are
"1.3", "1.2", "1.1", or null

 StartPage: specifies the first page in the range of pages to examine; the default value is one
[1]

 EndPage: specifies the last page in the range of pages to examine. The default value here is
the last page of the document

 MultiPageTables: controls whether similar tables on consecutive pages will be automatically
combined into a single table. Here, the default value is true

 EnforceBorderLines: controls whether border lines are always enforced as cell boundaries
(when true), or simply used as one hint among many for determining cell boundaries (when
false). The default value here is false.

This explains where [Implementation="1.3"] comes from. It is the algorithm version, and appears to
be the latest version, which is reassuring.

 SumProduct Pty Ltd

Page 94 of 126 © SumProduct Pty Ltd 2009 - 2024

So back to my extracted data; I know I want the page data, so I can filter the Id column to get
everything beginning with ‘Page’:

This gives me just the pages. I only need the Data column now, so I select it and opt to ‘Remove
Other Columns’.

I can then expand the data, which extracts to columns 1 to 7:

 SumProduct Pty Ltd

Page 95 of 126 © SumProduct Pty Ltd 2009 - 2024

The key to making my transformations as immune to change as possible is to keep the data I need
rather than delete the data I don’t. Looking at the columns, the easiest way to see if there is any
useful data in there is to use the filter icon; Column1 is clearly very useful.

 SumProduct Pty Ltd

Page 96 of 126 © SumProduct Pty Ltd 2009 - 2024

However, Column8 is not:

However, rather than delete Column8, I should keep what I need. On the Home tab, there is an
option to ‘Choose Columns’:

I can use this to specify columns I want to keep. It’s much easier than selecting them all for large
tables!

 SumProduct Pty Ltd

Page 97 of 126 © SumProduct Pty Ltd 2009 - 2024

I choose to select the first seven [7] columns.

I can see that the heading data from the tables is in Column1, which suggests that transposing my
data would be useful. I can do this from the Transform tab.

This swaps the rows and the columns and is much closer to the format I want to see.

 SumProduct Pty Ltd

Page 98 of 126 © SumProduct Pty Ltd 2009 - 2024

I can check the data in my columns again to see which ones I want to keep. However, it is clear that
this time the column names will change with the extra text that is present in my source data.

Before I decide which columns to keep, I need some way of identifying them. I will promote the first
column to the column headings, which I can do from the Transform Tab.

I choose ‘Use First Row as Headers’:

Power Query has created a ‘Changed Type’ step, but this references column names, so I delete it. I
can pick the columns I want to keep in the same way as I did earlier.

 SumProduct Pty Ltd

Page 99 of 126 © SumProduct Pty Ltd 2009 - 2024

I have the data I want to keep, but there are two tables in here: the store data and the pay scales.

I can keep this query, which I will call All Data, and make Reference queries: one for the store table
and one for the pay scales table. I can create reference queries from the ‘Home’ tab.

I call this Reference Query Pay Scales.

I also create another Reference Query, Stores.

I start with Pay Scales.

I start by keeping the columns I will be needing for this table.

 SumProduct Pty Ltd

Page 100 of 126 © SumProduct Pty Ltd 2009 - 2024

This means I can concentrate on the data I need to transform for this table.

Having checked the data, I actually only need the pay scale columns, so I select them whilst holding
down the CRTL key and click on ‘Remove Other Columns’.

 SumProduct Pty Ltd

Page 101 of 126 © SumProduct Pty Ltd 2009 - 2024

Power Query incorporates this into the existing ‘Remove Other Columns’ step.

I can remove empty rows from the Home tab.

I can now look at how to transform my data from this into a useful table.

 SumProduct Pty Ltd

Page 102 of 126 © SumProduct Pty Ltd 2009 - 2024

Transposing Data

I want to transpose the data, but if I do this with some of the data I need in the column headings, I
will lose it. First, I need to demote the column headings so that I have the information in a row. I
can do this from the Home tab.

This creates a ‘Change Type’ step which I delete as I am not ready to decide column types yet. I am
now ready to transpose my data, using the option on the Transform tab.

My data is starting to take shape.

I can rename the headings.

 SumProduct Pty Ltd

Page 103 of 126 © SumProduct Pty Ltd 2009 - 2024

Splitting Columns

I want to show a start and end salary, rather than have the information in one column. I can split the
Salary column from the Transform tab.

From the dropdown, I choose to split ‘By Delimiter’; this brings up a dialog.

I choose to split by space at each occurrence of a space, because this will give me a column with the
lower and upper limit.

I delete the automated ‘Changed Type’ step again. I don’t need Salary.2, so I can remove this. As
usual, I do this by selecting the columns I want to keep and ‘Remove Other Columns’.

 SumProduct Pty Ltd

Page 104 of 126 © SumProduct Pty Ltd 2009 - 2024

I want Salary.1 and Salary.2 to be numeric columns, so I need to remove the £ signs. I can do this by
selecting the columns and replacing £ with blank. I start by using ‘Replace Values’ on the Transform
tab.

This provides a dialog where I can enter the details.

This will remove the £ signs.

Next, I change both columns to whole numbers. I can do this from the Home tab or the Transform
tab, or by using the right-click menu, and changing the data type.

 SumProduct Pty Ltd

Page 105 of 126 © SumProduct Pty Ltd 2009 - 2024

I get an error, but I can use ‘Replace Values’ again; this time, I choose ‘Replace Errors’.

I want to replace it with null, not zero [0], since zero is the starting point for ‘Pay Scale A’.

Next, I need to transform the Percentage Increase column. If I make it the data type Percentage, I
will get values of over 100: I need to divide the values by 100 first, which I can do from the
Transform tab, but first I change the data type to ‘Decimal Number’. This will allow me to access the
‘Standard’ dropdown.

 SumProduct Pty Ltd

Page 106 of 126 © SumProduct Pty Ltd 2009 - 2024

I choose ‘Divide’ and enter 100 in the dialog.

I can now set the correct data types for all of the columns.

I rename the salary columns, and my table is ready to ‘Close & Load’.

 SumProduct Pty Ltd

Page 107 of 126 © SumProduct Pty Ltd 2009 - 2024

Next, I turn to the Stores table.

I have 10 stores in my table, and I need to perform the same transformations for each one. The first
step I will take is to merge the columns I need for Store 1. I select Store 1, Pay Scales and
Workforce expansion whilst holding down the CTRL key. When I right-click, I have the option to
‘Merge Columns’.

Clicking on this option reveals a dialog:

I choose not to use a separator, since I can split by non-numeric and numeric characters later. I want
to call my new column Store 1, but Power Query won’t let me do this as this is one of the names of
the original columns, so for now I take the default Merged.

 SumProduct Pty Ltd

Page 108 of 126 © SumProduct Pty Ltd 2009 - 2024

I can adjust the step created from:

Table.CombineColumns(Table.TransformColumnTypes(Source, {{"Store 1", type text}}, "en-
AU"),{"Store 1", "Pay Scales",
"Workforce#(lf)expansion"},Combiner.CombineTextByDelimiter("", QuoteStyle.None),"Merged")

to:

Table.CombineColumns(Table.TransformColumnTypes(Source, {{"Store 1", type text}}, "en-
AU"),{"Store 1", "Pay Scales",
"Workforce#(lf)expansion"},Combiner.CombineTextByDelimiter("", QuoteStyle.None),"Store 1")

This is then accepted with no issues:

I repeat this for the other stores.

 SumProduct Pty Ltd

Page 109 of 126 © SumProduct Pty Ltd 2009 - 2024

I could keep working on all the stores together, but it would soon become a large table. Instead, I
am going to work on the stores separately. Before I do this, I need to make sure that the store name
is included in the data, so I demote headers using the option from the Transform tab:

My data is now safely stored in the rows, and I can create a query from a column. I right-click with
Column1 selected:

 SumProduct Pty Ltd

Page 110 of 126 © SumProduct Pty Ltd 2009 - 2024

This creates a new List Query.

I will rename my List Query to Store 1 to reflect the data.

What I want now, is to create a series of steps that will work on any of the stores. I need a function.
I start by taking a reference copy of Store 1.

I call my new query fn_store.

 SumProduct Pty Ltd

Page 111 of 126 © SumProduct Pty Ltd 2009 - 2024

The first step is to convert this list to a table. I can do this from the List tab or I may otherwise right-
click.

A dialog appears where I shall accept the defaults:

This gives me access to the other tabs.

I start by promoting the first row to headers using the option on the Transform Tab.

 SumProduct Pty Ltd

Page 112 of 126 © SumProduct Pty Ltd 2009 - 2024

I am ready to create the transformations required and convert this query. I start by getting rid of
any empty rows. I can do this by using ‘Remove Blank Rows’ from the Home tab:

This simplifies my table: for this store it is one row, but for other stores there may be more.

I need the store information to be a separate column. I can do this by employing the ‘Unpivot
Column’ feature from the Transform tab.

I now have a column with the store data, and one for the pay scales and percentage increase of
workforce. I will rename these columns later.

I need to keep in mind that this function needs to cope with the data for all the stores. This means I
need to carry out some replacements:

 ‘All’ needs to be replaced by ‘A,B,C’
 ‘ and ‘ needs to be replaced by ‘,’

 SumProduct Pty Ltd

Page 113 of 126 © SumProduct Pty Ltd 2009 - 2024

I can then use comma (,) as my delimiter to split up the pay scales. I begin with ‘Replace Values’ on
the ‘Transform’ tab, or else by right-clicking:

First I replace ‘All’:

Then I replace ‘ and ‘:

 SumProduct Pty Ltd

Page 114 of 126 © SumProduct Pty Ltd 2009 - 2024

My data is now ready to be split:

I am going to split the column into pay scales and increase percentage. I can do this by right-clicking,
and choosing to ‘Split Column’ ‘By Non-Digit to Digit’:

This gives me an extra column.

 SumProduct Pty Ltd

Page 115 of 126 © SumProduct Pty Ltd 2009 - 2024

Now I can split up the pay scales: I will do this using Comma as a Delimiter, and I will choose to ‘Split
into Rows’ in the advanced options.

This gives me more rows:

I keep the automated ‘Changed Type’ step and rename the columns.

 SumProduct Pty Ltd

Page 116 of 126 © SumProduct Pty Ltd 2009 - 2024

My query is ready to be converted to a function. I need to parameterise, so I view the M code in the
Advanced Editor, available from the Home tab.

The only line I need to change is the Source step. I am going to introduce a parameter p_store,
which will receive any of the store columns as a list. The M code before the ‘let’ statement will be:

(p_store as list) =>

and the Source step will change from:

Source = #"Store 1",

to:

Source = p_store,

 SumProduct Pty Ltd

Page 117 of 126 © SumProduct Pty Ltd 2009 - 2024

As soon as I click ‘Done’, Power Query recognises that my query is now a function.

It is prompting me for a column (field). This means that this function will now create a table from
any of the store columns in the Stores query.

 SumProduct Pty Ltd

Page 118 of 126 © SumProduct Pty Ltd 2009 - 2024

I can test the function on Column1:

Invoking this query will give me a table:

In the Stores query, I need to make sure I only have the columns I need. To do this, I will remove the
‘Demote Headers’ step. I can reapply it before I invoke the function.

 SumProduct Pty Ltd

Page 119 of 126 © SumProduct Pty Ltd 2009 - 2024

This means I have the store names in the headings to choose:

This gives me the store columns, and I can demote the headers again:

 SumProduct Pty Ltd

Page 120 of 126 © SumProduct Pty Ltd 2009 - 2024

Stores is ready to use as the Source for fn_store. I go back to fn_store:

I need to provide a column from the Stores query.

I use Column1:

 SumProduct Pty Ltd

Page 121 of 126 © SumProduct Pty Ltd 2009 - 2024

Invoking this query will give me a table:

I rename this table Expansion by Store. I am going to use the M code already generated as a basis
for this query.

 SumProduct Pty Ltd

Page 122 of 126 © SumProduct Pty Ltd 2009 - 2024

I take the M code created for Column1, and replicate it for 10 columns. I have renamed the steps to
make it clear what I am planning. I will rename the final ‘in’ statement when I have finished:

I

 SumProduct Pty Ltd

Page 123 of 126 © SumProduct Pty Ltd 2009 - 2024

I have created a table for each store; now I just need to append them. The M code function to
append is:

Table.Combine({table1, table2,….}).

I add this line to the M code in the Advanced Editor.

I click ‘Done’ to see the results:

 SumProduct Pty Ltd

Page 124 of 126 © SumProduct Pty Ltd 2009 - 2024

I have the results in the format I wanted for all stores. I can now ‘Close & Load’. I will choose ‘Close
& Load to…’ so that I can load to ‘Connection Only’ to begin with to avoid loading all queries.

I can then right-click on the queries I want to load, and position them together:

I load the tables onto a worksheet:

 SumProduct Pty Ltd

Page 125 of 126 © SumProduct Pty Ltd 2009 - 2024

I check the data types and the report is ready.

 SumProduct Pty Ltd

Page 126 of 126 © SumProduct Pty Ltd 2009 - 2024

Further Reading

The course may consider topics not covered in this document. Moreover, you may wish to learn
more. SumProduct presently has weekly blogs on Power Query which may be found here:

https://www.sumproduct.com/blog

Past articles may be located here:

https://www.sumproduct.com/thought/power-query-blog-series

Find out more at contact@sumproduct.com or training@sumproduct.com as required. We are
happy to help!

Liam Bastick
+61 421 610 852
liam.bastick@sumproduct.com

November 2024

